

FREE-VIBRATION ANALYSIS OF PLATES AND SHELLS WITH A NINE-NODE ASSUMED NATURAL DEGENERATED SHELL ELEMENT

S. J. Lee

Integrated Safety Assessment Team, Korea Atomic Energy Research Institute, P.O. Box 105, Yusung, Taejon 305-600, South Korea, E-mail: sjlee@kaeri.re.kr

AND

S. E. HAN

Department of Architectural Engineering, Inha University, Inchon 402-751, South Korea

(Received 7 December 1998, and in final form 20 July 2000)

A study on the free-vibration analysis of plates and shells is described in this paper. In order to determine the natural frequencies of plates and shells, a nine-node degenerated shell element is developed by using the degenerated solid concept based on Reissner–Mindlin (RM) assumptions which allow the shear deformation and rotatory effect to be considered. All terms required in the shell finite element (FE) formulation are defined in the natural domain. In particular, assumed natural strains are derived to alleviate the locking phenomena inherited in the RM shell elements. The natural constitutive equation is used in conjunction with the natural strain terms. The proposed shell FE formulation offers significant implementation advantages since it consistently uses the natural co-ordinate system. Various numerical examples are carried out and its results are then compared with the existing exact solutions and the numerical solutions calculated by other shell FEs.

1. INTRODUCTION

In Engineering practice, it is often of vital importance to conduct a free-vibration analysis of structures and to use the resulting information in the design process so that the resonant behaviour of the structures can be prevented for the given loading conditions.

The vibration of thin shells was discussed in the early work of Love [1]. Since then many researchers have dealt with shell vibration using classical thin-shell theory. In particular, Donnell [2] used classical thin shallow-shell theory to understand the free-vibration behaviour of shells and subsequent research has been reviewed by Leissa [3], Qatu [4] and Liew *et al.* [5]. However, until the 1960s shell vibration research focused on individual types of shell and the applications of shell theory were limited to specific geometries.

In order to investigate the vibration behaviour of complex shell structures, the FE method was inevitably introduced and it has subsequently become the most popular method. In particular, many shallow shell elements have been developed since the early work of Adini [6]. As noted by Gallagher [7], the development of thin-shell FEs began with application to aerospace vehicles. During the early 1960s, a large number of thin-shell elements were therefore developed to meet the demands of the aerospace industry. In this period, three-dimensional elements were also widely used to design thick-walled shell stuctures.

However, an innovative approach, the so-called degenerated solid concept, was introduced by Ahmad *et al.* [8]. Nowadays, the degenerated shell element based on this concept is one of the most popular shell FE formulations. Generally, RM assumptions have been adopted in the development of such elements and therefore the mass matrix includes rotatory inertia effects. It has been shown that the accuracy of the frequency is improved by the rotatory inertia terms in the mass matrix for thick shells as well as the inclusion of transverse shear effects in the stiffness matrix. However, it is found that there are serious defects such as locking phenomena in the degenerated shell element.

As an early remedy to locking phenomena inherited in the degenerated shell element based on RM assumptions, the so-called reduced integration [9, 10] was used in the transverse shear energy term. However, the shell elements with the reduced integration suffered from the mechanism and later other methods, such as assumed strain methods [11] and stabilization method [12], have been proposed by many researchers. The assumed strain methods have been successfully used in stress FE analysis. However, in contrast, there are few investigations on the performance of the assumed natural strain shell element in the shell free-vibration analysis.

In this paper, therefore, the natural domain-based shell formulation is provided with emphasis on the terms related to the stiffness and mass matrices. Then a set of bench-marks are presented to show the application of the shell formulation to various types of shells under free-vibration conditions.

Although a new shell element has been developed by means of calculating the natural frequencies of shells, it is important to evaluate the performance of shell FE in the plate situations, which may be considered as a special form of shells with no curvature. Recent work on the free-vibration analysis of plate element can be found in open literature. In particular, the plate vibration problems can be consulted in reference [13].

Note that the Lobatto integration rule [14] is adopted to evaluate the mass matrix and the subspace iteration method [15, 16] is employed in the calculation of the lowest eigenvalues of shells. It should be noted that Gauss integration rule is used in the first example to provide some comparative results with the Lobatto integration rule.

2. GEOMETRY AND KINEMATICS OF SHELLS

The geometry of degenerated shell element is represented by two vectors $(\mathbf{x}_{top}^a \text{ and } \mathbf{x}_{bot}^a)$, which are the position vectors of the original solid element as shown in Figure 1. The degeneration of the solid element requires the use of the vector $\hat{\mathbf{v}}_3^a$ which allows the top and bottom nodes to be degenerated into the node at the shell mid-surface. The definition of the shell geometry [8] can be written as

$$\mathbf{x}(\xi_1, \xi_2, \xi_3) = \sum_{a=1}^9 N_a(\xi_1, \xi_2) \left[\bar{\mathbf{x}}^a + \frac{\xi_3 h^a}{2} \hat{\mathbf{v}}_3^a \right],\tag{1}$$

where **x** is the position vector of a generic point in the element domain, $\bar{\mathbf{x}}^a = \frac{1}{2}(\mathbf{x}_{top}^a + \mathbf{x}_{bot}^a)$ denotes the position vector of node *a* in the mid-surface, h^a is the thickness of the shell at node *a* and $\hat{\mathbf{v}}_3^a$ is the unit vector through thickness direction at node *a* which is created using

$$\hat{\mathbf{v}}_3^a = \frac{\mathbf{x}_{top}^a - \mathbf{x}_{bot}^a}{|\mathbf{x}_{top}^a - \mathbf{x}_{bot}^a|} \tag{2}$$

in which \mathbf{x}_{top}^{a} denotes the position vector of node *a* in the top surface and \mathbf{x}_{bot}^{a} denotes the position vector of node *a* in the bottom surface as shown in Figure 1.

Figure 1. Degenerated solid concept illustrated by using a solid element.

However, it should be noted that the shell normal can be created by using the co-ordinates of the shell mid-surface. In most cases, the third axis of the local co-ordinate system [17] is used as the shell normal at the nodal point. Therefore, the above equation can be replaced by the following form:

$$\mathbf{x}(\xi_1, \xi_2, \xi_3) = \sum_{a=1}^9 N_a(\xi_1, \xi_2) \left[\bar{\mathbf{x}}^a + \frac{\xi_3 h^a}{2} \, \hat{\mathbf{d}}^a \right]$$
(3)

in which $\hat{\mathbf{d}}^a$ is established at node *a* by using

$$\hat{\mathbf{d}}^{a}(\xi_{1},\xi_{2}) = \frac{\bar{\mathbf{x}}_{,\xi_{1}}^{a}(\xi_{1},\xi_{2}) \times \bar{\mathbf{x}}_{,\xi_{2}}^{a}(\xi_{1},\xi_{2})}{|\bar{\mathbf{x}}_{,\xi_{1}}^{a}(\xi_{1},\xi_{2}) \times \bar{\mathbf{x}}_{,\xi_{2}}^{a}(\xi_{1},\xi_{2})|}.$$
(4)

Note that the vector $\hat{\mathbf{d}}^a$ can be replaced with $\hat{\mathbf{v}}_3^a$ if the co-ordinates of top and bottom shell surface are available.

The displacement field \mathbf{u} used in the present shell element having six degrees of freedom per node can be defined as

$$\mathbf{u}(\xi_1, \xi_2, \xi_3) = \sum_{a=1}^{9} N_a(\xi_1, \xi_2) \left[\bar{\mathbf{u}}^a + \frac{\xi_3 h^a}{2} (\mathbf{R}_s^a - \mathbf{I}_{3\times 3}) \mathbf{\hat{d}}^a \right],$$
(5)

where the unit normal vector at node *a*, namely $\hat{\mathbf{d}}^a$, is defined using equation (4), I is the identity matrix and the rotational matrix \mathbf{R}^a_s has the form

$$\mathbf{R}_{s}^{a} = \begin{bmatrix} 1 & -\theta_{3}^{a} & \theta_{2}^{a} \\ \theta_{3}^{a} & 1 & -\theta_{1}^{a} \\ -\theta_{2}^{a} & \theta_{1}^{a} & 1 \end{bmatrix}$$
(6)

in which θ_i^a denotes the rotations associated with the components of the shell normal $\hat{\mathbf{d}}^a$.

For later use, the displacement field in equation (5) can be written in the following form:

$$\mathbf{u} = \sum_{a=1}^{9} \mathbf{N}_a \mathbf{u}^a,\tag{7}$$

where \mathbf{u}^a is the displacement vector at the node *a* and the shape function matrix \mathbf{N}_a associated with the node *a* is

$$\mathbf{N}_{a} = N_{a} \begin{bmatrix} 1 & 0 & 0 & h_{s}^{a}(\xi_{3})\hat{d}_{z}^{a} & -h_{s}^{a}(\xi_{3})\hat{d}_{y}^{a} \\ 0 & 1 & 0 & -h_{s}^{a}(\xi_{3})\hat{d}_{z}^{a} & 0 & h_{s}^{a}(\xi_{3})\hat{d}_{x}^{a} \\ 0 & 0 & 1 & h_{s}^{a}(\xi_{3})\hat{d}_{y}^{a} & -h_{s}^{a}(\xi_{3})\hat{d}_{x}^{a} & 0 \end{bmatrix}$$
(8)

in which $h_s^a(\xi_3) = \xi_3 h^a/2$ and \hat{d}_x^a , \hat{d}_y^a and \hat{d}_z^a are the components of the unit normal vector $\hat{\mathbf{d}}^a$ in the global co-ordinate system.

3. SHELL FORMULATIONS

All terms used in the derivation of the present shell element are expressed in terms of the natural co-ordinates. Therefore the natural strains and the constitute equation are used.

3.1. STRAIN DEFINITION

The linear terms of natural strains can be derived from the natural Lagrangian strains [18]

$$\tilde{\varepsilon}_{ij} = \frac{1}{2} \left(\frac{\partial u_k}{\partial \xi_i} \frac{\partial x_k}{\partial \xi_j} + \frac{\partial u_k}{\partial \xi_j} \frac{\partial x_k}{\partial \xi_i} \right).$$
(9)

In the discretized FE domain, the natural strain-displacement matrix $\tilde{\mathbf{B}}^a$ can be obtained by using the following operation:

$$\tilde{\mathbf{B}}^a = \mathbf{L}[\tilde{\mathbf{\varepsilon}}_v, \tilde{\mathbf{\varepsilon}}_s] \tag{10}$$

in which $\tilde{\mathbf{\epsilon}}_p = [\varepsilon_{11}, \varepsilon_{22}, \varepsilon_{12}]^T$ is the in-plane strain term and $\tilde{\mathbf{\epsilon}}_s = [\varepsilon_{13}, \varepsilon_{23}]^T$ is the transverse shear strain term and the partial differential operator L is

$$\mathbf{L}^{\mathrm{T}} = \{ \partial/\partial u_{1}^{a}, \partial/\partial u_{2}^{a}, \partial/\partial u_{3}^{a}, \partial/\partial \theta_{1}^{a}, \partial/\partial \theta_{2}^{a}, \partial/\partial \theta_{3}^{a} \}.$$
(11)

Because of the locking phenomena inherited in the degenerated RM shell element, the standard strain-displacement matrix $\tilde{\mathbf{B}}^a$ is substituted with assumed natural strains in this study. The sampling points used in the formulation of assumed natural strains are presented in Figure 2. The interpolation functions used in formulating the assumed strains are based on Lagrangian interpolation polynomials as proposed by Huang and Hinton [19]. Consequently, the substitute assumed that natural strains $\tilde{\varepsilon}^A$ can be defined in the following form:

$$\tilde{\varepsilon}_{11}^{A} = \sum_{i=1}^{2} \sum_{j=1}^{3} \mathscr{P}_{i}(\xi_{1}) \mathscr{Q}_{j}(\xi_{2}) \tilde{\varepsilon}_{11}^{\delta}, \qquad \tilde{\varepsilon}_{22}^{A} = \sum_{i=1}^{2} \sum_{j=1}^{3} \mathscr{P}_{i}(\xi_{2}) \mathscr{Q}_{j}(\xi_{1}) \tilde{\varepsilon}_{22}^{\delta},$$

$$\tilde{\varepsilon}_{12}^{A} = \sum_{i=1}^{2} \sum_{j=1}^{2} \mathscr{P}_{i}(\xi_{1}) \mathscr{P}_{j}(\xi_{2}) \tilde{\varepsilon}_{12}^{\delta}, \qquad (12)$$

$$\tilde{\varepsilon}_{13}^{A} = \sum_{i=1}^{2} \sum_{j=1}^{3} \mathscr{P}_{i}(\zeta_{1}) \mathscr{Q}_{j}(\zeta_{2}) \tilde{\varepsilon}_{13}^{\delta}, \qquad \tilde{\varepsilon}_{23}^{A} = \sum_{i=1}^{2} \sum_{j=1}^{3} \mathscr{P}_{i}(\xi_{2}) \mathscr{Q}_{j}(\xi_{1}) \tilde{\varepsilon}_{23}^{\delta}$$

Figure 2. The sampling point for the natural assumed strains; left for \tilde{e}_{11} , \tilde{e}_{13} centre for \tilde{e}_{22} , \tilde{e}_{23} and right for \tilde{e}_{12} .

in which $\delta = 2(j-1) + i$ denotes the position of the sampling point as shown in Figure 2 and the shape functions $\mathcal{P}_i(\xi)$ and $\mathcal{Q}_i(\xi)$ are

$$\mathcal{P}_{1}(\xi) = \frac{1}{2}(1 + \sqrt{3}\xi), \qquad \mathcal{P}_{2}(\xi) = \frac{1}{2}(1 - \sqrt{3}\xi),$$
$$\mathcal{P}_{1}(\xi) = \frac{1}{2}\xi(\xi + 1), \qquad \mathcal{P}_{2}(\xi) = 1 - \xi^{2}, \qquad \mathcal{P}_{3}(\xi) = \frac{1}{2}\xi(\xi - 1).$$
(13)

The assumed natural strains $\tilde{\epsilon}^A$ derived from equation (12) are used in the present shell element instead of the strains $\tilde{\epsilon}$ of equation (9) obtained from the displacement field.

3.2. CONSTITUTIVE EQUATION

The stress tensor for elastically isotropic materials can be written as

$$\sigma_{ij} = D_{ijkl}\varepsilon_{kl} = \left[\lambda\delta_{ij}\delta_{kl} + \mu(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk})\right]\varepsilon_{kl},\tag{14}$$

where σ_{ij} is the Cauchy stress, D_{ijkl} are a fourth order isotropic material tensor and ε_{kl} is the small strains. λ and μ are the Lame constant and δ_{ij} is the Kronecka delta.

An isotropic material is not direction dependent. However, a scaling factor has to be introduced when elastic constants are formed in the natural co-ordinate domain. The natural stress tensor can be written as follows:

$$\tilde{\sigma}_{\alpha\beta} = \tilde{D}_{\alpha\beta\gamma\delta}\tilde{\varepsilon}_{\gamma\delta} = \tilde{J}_o[\lambda g_{\alpha\beta}g_{\gamma\delta} + \mu(g_{\alpha\gamma}g_{\beta\delta} + g_{\alpha\delta}g_{\beta\gamma})]\tilde{\varepsilon}_{\gamma\delta}, \tag{15}$$

where the natural constitutive tensor is obtained from

$$\tilde{D}_{\alpha\beta\gamma\delta} = \tilde{J}_o \frac{\partial \xi_\alpha}{\partial x_i} \frac{\partial \xi_\beta}{\partial x_k} \frac{\partial \xi_\gamma}{\partial x_k} \frac{\partial \xi_\delta}{\partial x_l} D_{ijkl}$$
(16)

and $\tilde{J}_o = \det[\partial x_i/\partial \xi_{\alpha}]$ and $g_{\alpha\beta} = \partial \xi_{\alpha}/\partial x_i \partial \xi_{\beta}/\partial x_i$.

The above equation can be reduced using the generalized plane stress condition $\tilde{\sigma}_3 = 0$ with the assumption that the effect of variation of natural constitutive parameters in the thickness direction can be neglected as follows:

$$\tilde{D}_{\alpha\beta\gamma\delta} = \bar{J}_o [\bar{\lambda}\bar{g}_{\alpha\beta}g_{\gamma\delta} + \mu(\bar{g}_{\alpha\gamma}\bar{g}_{\beta\delta} + \bar{g}_{\alpha\delta}\bar{g}_{\beta\gamma})], \qquad (17)$$

where $\bar{\lambda}$ is the reduced Lamé's constant for the generalized plane stress-strain relationship, \bar{J}_o and $\bar{g}_{\alpha\beta}$ are calculated using \tilde{J}_o and $g_{\alpha\beta}$ at $\xi_3 = 0$.

Now the natural stresses can be rewritten in matrix form

$$\begin{cases} \tilde{\boldsymbol{\sigma}}_p \\ \tilde{\boldsymbol{\sigma}}_s \end{cases} = \begin{bmatrix} \tilde{\mathbf{D}}_p^* & 0 \\ 0 & \tilde{\mathbf{D}}_s^* \end{bmatrix} \begin{cases} \tilde{\varepsilon}_p \\ \tilde{\varepsilon}_s \end{cases},$$
(18)

where $\tilde{\boldsymbol{\sigma}}_p = [\tilde{\sigma}_{11}, \tilde{\sigma}_{22}, \tilde{\sigma}_{12}]^{\mathrm{T}}$ is in-plane stress term and $\tilde{\boldsymbol{\sigma}}_s = [\tilde{\sigma}_{13}, \tilde{\sigma}_{23}]^{\mathrm{T}}$ is the transverse shear stress term and the natural in-plane and transverse shear rigidity matrices $\tilde{\mathbf{D}}_p^*, \tilde{\mathbf{D}}_s^*$ are

$$\begin{split} \tilde{\mathbf{D}}_{p}^{*} &= \bar{J}_{o} \begin{bmatrix} \alpha \bar{g}_{11}^{2} & \beta \bar{g}_{11} \bar{g}_{22} + 2 \bar{g}_{12}^{2} & \alpha \bar{g}_{11} \bar{g}_{12} \\ \beta \bar{g}_{11} \bar{g}_{22} + 2 \bar{g}_{12}^{2} & \alpha \bar{g}_{22}^{2} & \alpha \bar{g}_{12} \bar{g}_{22} \\ \alpha \bar{g}_{11} \bar{g}_{12} & \alpha \bar{g}_{12} \bar{g}_{22} & \beta \bar{g}_{12}^{2} + \mu (\bar{g}_{11} \bar{g}_{22} + \bar{g}_{12}^{2} \end{bmatrix}, \\ \tilde{\mathbf{D}}_{s}^{*} &= \bar{J}_{o} \begin{bmatrix} k_{s} \mu \bar{g}_{11} \bar{g}_{33} & k_{s} \mu \bar{g}_{12} \bar{g}_{33} \\ k_{s} \mu \bar{g}_{12} \bar{g}_{33} & k_{s} \mu \bar{g}_{22} \bar{g}_{33} \end{bmatrix} \end{split}$$
(19)

in which the parameters α and β are

$$\alpha = \frac{4\mu(\lambda + \mu)}{\lambda + 2\mu} = \frac{E}{1 - v^2} \quad \text{and} \quad \beta = \frac{2\mu\lambda}{\lambda + 2\mu} = \frac{vE}{1 - v^2} \tag{20}$$

and k_s is the shear correction factor which is taken as $\frac{5}{6}$ for an isotropic material and v is the Poisson ratio.

3.3. EQUILIBRIUM EQUATION

In the absence of external loads and damping effects, the dynamic equilibrium equation based on the principle of virtual work (or more precisely virtual power) can be written as

$$\int_{\Omega} \left[\delta \boldsymbol{\varepsilon}_{p}^{\mathrm{T}} \mathbf{D}_{p} \boldsymbol{\varepsilon}_{p} + \delta \boldsymbol{\varepsilon}_{s}^{\mathrm{T}} \mathbf{D}_{s} \boldsymbol{\varepsilon}_{s} \right] \mathrm{d}\Omega = \int_{\Omega} \left[\delta \mathbf{u} \right]^{\mathrm{T}} \rho \ddot{\mathbf{u}} \, \mathrm{d}\Omega.$$
(21)

For a discretized FE domain, the displacement field can be expressed in terms of the nodal displacements \mathbf{u}^a and the global shape functions $\hat{\mathbf{N}}_a$ [14] which are constructed from local shape functions N_a and the accelerations can be also written in the same way:

$$\mathbf{u} = \sum_{a=1}^{np} \hat{\mathbf{N}}_{a}(\xi_{1}, \xi_{2}, \xi_{3}) \mathbf{u}^{a}, \qquad \ddot{\mathbf{u}} = \sum_{a=1}^{np} \hat{\mathbf{N}}_{a}(\xi_{1}, \xi_{2}, \xi_{3}) \ddot{\mathbf{u}}^{a},$$
(22)

where np is the total number of the node in the discretized domain and the virtual terms associated with the displacement and acceleration are

$$\delta \mathbf{u} = \sum_{a=1}^{np} \hat{\mathbf{N}}_a(\xi_1, \xi_2, \xi_3) \delta \mathbf{u}^a, \qquad \delta \ddot{\mathbf{u}} = \sum_{a=1}^{np} \hat{\mathbf{N}}_a(\xi_1, \xi_2, \xi_3) \delta \ddot{\mathbf{u}}^a, \tag{23}$$

The strain-displacement and virtual strain-displacement relationships can then be written as

$$\boldsymbol{\varepsilon} = \sum_{a=1}^{np} \hat{\mathbf{B}}^{a} \mathbf{u}^{a}, \qquad \delta \boldsymbol{\varepsilon} = \sum_{a=1}^{np} \hat{\mathbf{B}}^{a} \delta \mathbf{u}^{a}, \tag{24}$$

where $\hat{\mathbf{B}}^a$ is the global strain-displacement matrix which is constructed from local strain-displacement matrix \mathbf{B}^a .

Substituting equations (22)-(24) into equation (21) yields

$$\delta \mathbf{u}^{\mathrm{T}} [\mathbf{K} \mathbf{u} - \mathbf{M} \ddot{\mathbf{u}}] = \mathbf{0}. \tag{25}$$

Since the virtual displacement $\delta \mathbf{u}$ are arbitrary, the above equation may be written as

$$\mathbf{K}\mathbf{u} - \mathbf{M}\ddot{\mathbf{u}} = \mathbf{0}.\tag{26}$$

A general solution to equation (26) may be written as

$$\mathbf{u} = \theta_k \mathbf{e}^{\mathbf{i}\omega_k t}.\tag{27}$$

Substituting equation (27) into equation (26) yields

$$[\mathbf{K} - \omega_k^2 \mathbf{M}] \phi_k = 0, \tag{28}$$

where ϕ_k is a set of displacement-type amplitude at the nodes otherwise known as the modal vector and ω_k is the *natural frequency* associated with the *k*th mode and $\mathbf{K} = \mathbf{A}_{e=1}^{nel} \mathbf{K}^{(e)}$ and $\mathbf{M} = \mathbf{A}_{e=1}^{nel} \mathbf{M}^{(e)}$ are global stiffness and mass matrices which contain contributions from the element stiffness and mass matrices formulated in the natural domain which, can be written as

$$\mathbf{K}^{ab(e)} = \int_{\tilde{\Omega}} \left[\tilde{\mathbf{B}}_{p}^{a^{\mathrm{T}}} \tilde{\mathbf{D}}_{p}^{*} \tilde{\mathbf{B}}_{p}^{b} + \tilde{\mathbf{B}}_{s}^{a^{\mathrm{T}}} \tilde{\mathbf{D}}_{s}^{*} \tilde{\mathbf{B}}_{s}^{b} \right] \mathrm{d}\tilde{\Omega}, \qquad \mathbf{M}^{ab(e)} = \int_{\tilde{\Omega}} \tilde{\rho} \mathbf{N}_{a}^{\mathrm{T}} \mathbf{N}_{b} \, \mathrm{d}\Omega, \tag{29}$$

where the constitutive matrices $\tilde{\mathbf{D}}_p^*$ and $\tilde{\mathbf{D}}_s^*$ are given in equation (19). The matrices $\tilde{\mathbf{B}}_p^*$ and $\tilde{\mathbf{B}}_p^*$ are the in-plane and transverse shear strain-displacement matrices obtained from equation (12). Note that the explicit form of the mass matrix is dependent on the displacement field of the shell elements and the consistent mass matrix linking nodes *a* and *b* of an *n*-node shell element can be written as

$$\mathbf{M}^{ab(e)} = \int_{\tilde{\Omega}} \tilde{\rho} \begin{vmatrix} N_a N_b & 0 & 0 & 0 & 0 & 0 \\ 0 & N_a N_b & 0 & 0 & 0 & 0 \\ 0 & 0 & N_a N_b & 0 & 0 & 0 \\ 0 & 0 & 0 & \varrho_{23}^{ab} & \bar{\varrho}_{12}^{ab} & \bar{\varrho}_{13}^{ab} \\ 0 & 0 & 0 & \bar{\varrho}_{13}^{ab} & \bar{\varrho}_{23}^{ab} & \bar{\varrho}_{23}^{ab} \\ 0 & 0 & 0 & \bar{\varrho}_{13}^{ab} & \bar{\varrho}_{23}^{ab} & \varrho_{12}^{ab} \end{vmatrix} \, \mathrm{d}\tilde{\Omega}, \tag{30}$$

where $\tilde{\rho}$ is the density of the element material, $\varrho_{13}^{ab} = (\xi_3^2 h^a h^b) [\hat{d}_i^a \hat{d}_j^b + \hat{d}_j^a \hat{d}_j^b]/4$ and $\bar{\varrho}_{ij}^{ab} = -(\xi_3^2 h^a h^b \hat{d}_i^a \hat{d}_j^b)/4$ and N_a is the shape function at node a.

It should be noted that the stiffness components associated with drilling degrees of freedom will be zero for the shell FEs having six degrees of freedom at each node if adjacent elements are coplanar or nearly coplanar. For this reason, the drilling degrees of freedom will be "linked" to the in-plane twisting mode of the mid-surface with a fictitious spring coefficient serving as a penalty parameter. From this concept, the torsional stiffness term was formed as described in reference [17] and added to the stiffness term in equation (29).

4. NUMERICAL EXAMPLES

Six numerical examples are considered in order to investigate the accuracy and reliability of the developed shell element based on the FE formulation described in the previous sections. For comparison purposes, an assumed natural nine-node plate element ANSP9 [20], a standard degenerated nine-node shell element LAG9 [17] and as assumed strain nine-node shell element ASL [19] are implemented and used to calculate new reference

Figure 3. The geometry of square plate.

solutions for some examples. The numerical results are then compared with the exact solutions and the reference solutions which are available in the open literature. In this study, the plates are considered as zero-curvature shells.

4.1. SQUARE PLATE

A square plate is analyzed in order to examine the effect of using different boundary conditions on the free-vibration behaviour of the plate. For the purpose of concise identification, each set of the boundary conditions is denoted by four letters which stand for the four sides in the rectangular plate. The sequence begins with x = 0 and proceeds anti-clockwise around the plate such as A-B-C-D illustrated in Figure 3. The six boundary conditions used in this example are (a) S-S-S-S, (b) C-C-C-C, (c) C-C-C-F, (d) S-C-S-C, (e) S-C-S-S and (f) S-C-S-F where S, C and F stand for the simply supported, clamped and free boundary conditions respectively.

In addition to the six boundary conditions, two thickness-span ratios are used: h/a = 0.1 and 0.01. In order to compare the present results with the existing reference solutions [21–26], several values of shear correction factors are employed according to the boundary conditions used: (a) S–S–S–S; $k_s = 0.8330$, (b) C–C–C–C; $k_s = 0.8330$, (c) C–C–C–F; $k_s = 0.8220$, (d) S–C–S–C; $k_s = 0.8601$, (e) S–C–S–S; $k_s = 0.8601$ and (f) S–C–S–F; $k_s = 0.8601$. The plates are discretized with a mesh of 100 nine-node elements. Note that an assumed natural nine-node plate element ANSP9 [20] and two shell elements LAG9 [17] and ASL9 [19] are used to produce new reference solutions.

In this example, the frequencies are presented in dimensionless form:

$$\Omega_n = \omega_n a (\rho/G)^{1/2},$$

where ω_n is the natural frequency of the plate, *a* is the side length of the plate, ρ is the mass density and the G = E/2(1 + v) is the shear modulus in which *E* is the elastic modulus and v = 0.3 is the Poisson ratio.

(a) S-S-S-S: The simply supported plate has been frequently solved and several analytical solutions for this case are available: three-dimensional elasticity solution [21], RM thick plate theory and classical thin plate theory [24–28]. In this case, multiple frequencies are detected since the plate has a double symmetry. The natural frequencies are presented in Table 1.

					conditio	n			
т	п	ES	MC	TC	ANSP9	ANSP9a	LAG9	ASL9	Present
For	r the	thickness	h = 0.1						
1	1	0.932	0.9300	0.9632	0.9303	0.9303	0.9303	0.9303	0.9303
2	1	2.226	2.2190	2.4080	2.2198	2.2195	2.2194	2.2195	2.2195
2	2	3.421	3.4060	3.8530	3.4064	3.4054	3.4053	3.4054	3.4054
3	1	4·171	4.1490	4.8160	4.1542	4·1510	4.1509	4·1510	4·1510
3	2	5.239	5.2060	6.2610	5.2102	5.2053	5.2050	5.2054	5.2053
4	1		6.5200		6.5425	6.5270	6.5268	6.5270	6.5270
3	3	6.889	6.8340	8.6680	6.8414	6.8307	6.8295	6.8307	6.8307
4	2	7.511	7.4460	9.6320	7.4673	7.4484	7.4474	7.4484	7.4484
4	3		8.8960	22.0400	8.9178	8.8892	8.8861	8.8893	8.8892
5	1	9.268	9.1740	12.5210	9.2444	9.1928	9.1923	9.1928	9.1928
5	2		9.9840	13.9660	10.0510	9.9924	9.9900	9.9924	9.9924
4	4	10.890	10.7640	15.4110	10.7960	10.7430	10.7360	10.7430	10.7430
For	r the	thickness	h = 0.01						
1	1		0.0963	0.0963	0.0963	0.0963	0.0963	0.0963	0.0963
2	1		0.2406	0.2408	0.2406	0.2406	0.2406	0.2406	0.2406
2	2		0.3848	0.3853	0.3848	0.3847	0.3846	0.3847	0.3847
3	1		0.4809	0.4816	0.4814	0.4810	0.4808	0.4810	0.4811
3	2		0.6249	0.6261	0.6253	0.6247	0.6243	0.6247	0.6247
4	1		0.8167	0.8187	0.8198	0.8179	0.8167	0.8179	0.8179
3	3		0.8647		0.8652	0.8639	0.8630	0.8639	0.8639
4	2		0.9605		0.9633	0.9609	0.9593	0.9609	0.9609
4	3		1.1997		1.2025	1.1988	1.1962	1.1989	1.1988

The non-dimensionalized natural frequencies Ω_{mm} of a plate with the S/S/S/S boundary

Note: ES: three-dimensional elasticity solutions [23]. MC: Reissner-Mindlin thick-plate theory solution [24, 25]. TC: thin-plate theory solution [24, 26]. ANSP9: assumed strain plate bending element solution using consistent mass [20]. ANSP9a: assumed strain plate bending element solution using lumped mass [20]. LAG9: nine-node shell element [17]. ASL9: assumed strain shell element [19].

(b) C-C-C-C: This is an inherently stiffer plate than the S-S-S-S plate. In this case, the multiple frequencies are also obtained because of its double symmetry. The natural frequencies are presented in Table 2.

(c) C-C-C-F: In this case, there is no double symmetry so multiple frequencies disappear. The mode shapes are particularly dominated by the free-boundary condition on one side of the plate. The natural frequencies are presented in Table 3.

(d) S-C-S-C: The overall mode shapes for this case are similar to those of the case S-S-S-S. However, the natural frequencies in this case are higher than those for case S-S-S-S. The natural frequencies are presented in Table 4.

(e) S-C-S-S: The overall mode shapes are similar to those of the cases S-S-S-S and S-C-S-C. The frequencies are a little higher than those of the case S-S-S-S but rather lower than those of the case S–C–S–C. The natural frequencies are presented in Table 5.

(f) S-C-S-F: This case has the lowest frequencies among the six cases. The overall mode shapes are similar to those of the case C-C-C-F but the frequencies in this case are lower than those of the case C-C-C-F. The natural frequencies are presented in Table 6.

From numerical results the natural strain shell elements shows a good performance and its results are in good agreement with the solutions obtained from the other shell elements. From the test, the plate with thickness h = 0.01 has lower frequencies than the plate with thickness h = 0.1.

т	п	MC	TC	ANSP9	ANSP9a	LAG9	ASL9	Present
For th	e thick	mess $h = 0.1$						
1	1	1.594	1.756	1.5913	1.5912	1.5910	1.5912	1.5912
2	1	3.046	3.581	3.0406	3.0397	3.0393	3.0397	3.0397
2	2	4.285	5.280	4.2653	4.2631	4.2619	4.2631	4.2631
3	1	5.035	6.421	5.0341	5.0289	5.0282	5.0289	5.0289
1	3	5.078	6.451	5.0817	5.0763	5.0758	5.0763	5.0763
3	2			6.0891	6.0817	6.0797	6.0817	6.0817
4	1			7.4459	7.4258	7.4251	7.4258	7.4258
3	3			7.6934	7.6788	7.6750	7.6788	7.6788
4	2			8.2911	8.2675	8.1729	8.2675	8.2675
2	4			8.3669	8.3427	8.2645	8.3427	8.3427
4	3			9.7322	9.6978	9.6914	9.6978	9.6978
For th	e thick	ness $h = 0.01$	l					
1	1	0.1754	0.1756	0.1754	0.1754	0.1754	1.7538	0.1754
2	1	0.3576	0.3581	0.3576	0.3575	0.3575	0.3575	0.3575
2	2	0.5274	0.5280	0.5268	0.5265	0.5264	0.5265	0.5265
3	1	0.6402	0.6421	0.6415	0.6407	0.6407	0.6407	0.6407
1	3	0.6432	0.6432	0.6446	0.6438	0.6438	0.6438	0.6438
3	2			0.8034	0.8021	0.8020	0.8021	0.8021
4	1			1.0296	1.0261	1.0261	1.0261	1.0261
3	3			1.0705	1.0679	1.0678	1.0679	1.0679
4	2			1.1818	1.1776	1.1775	1.1776	1.1776
2	4			1.1868	1.1825	1.1825	1.1826	1.1825
4	3			1.4436	1.4373	1.4371	1.4373	1.4373

The non-dimensionalized natural frequencies Ω_{mm} of a plate with the C/C/C/C boundary condition

4.2. CIRCULAR PLATE

A circular plate with clamped boundaries is analyzed. Hinton *et al.* [29] analyzed this problem using three different types of boundary conditions: (a) symmetry conditions on both edges, (b) symmetry and antisymmetry conditions on each edge and (c) antisymmetry conditions on both edges. However, the entire plate is used to examine the free-vibration behaviour of the plate. The plate is discretized with a mesh of 108, nine-node elements. The resulting frequencies are presented in the dimensionless form

$$\Omega_n = \omega_n r^2 (\rho h/D)^{1/2},$$

where ω_n is the natural frequency of the plate, r is the radius of the circular plate, h the thickness of the plate, ρ is the density of the material and the $D = Eh^3/12(1 - v^2)$ is the flexural rigidity of the plate in which E is the elastic modulus and v = 0.3 is the Poisson ratio. Two thickness-span ratios h/2r = 0.01 and 0.2 are used in this study. Asymmetric and axisymmetric vibration modes are detected in this example and multiple frequencies are obtained from the axisymmetric modes. The result for the thickness-span ratio h/2r = 0.01 is compared with the analytical solution [30]. It is shown that there are minor numerical

Note: MC: Reissner–Mindlin thick-plate theory solution [24, 25]. TC: thin-plate theory solution [24, 26]. ANSP9: assumed strain plate bending element solution using consistent mass [20]. ANSP9a: assumed strain plate bending element solution using lumped mass [20]. LAG9: nine-node shell element [17]. ASL9: assumed strain shell element [19].

				condition			
п	MC	TC	ANSP9	ANSP9a	LAG9	ASL9	Present
For the	e thickness h	= 0.1					
1	1.089	1.171	1.0807	1.0807	1.0804	1.0807	1.0807
2	1.785	1.953	1.7440	1.7438	1.7429	1.7438	1.7438
3	2.673	3.094	2.6577	2.6569	2.6562	2.6569	2.6569
4	3.216	3.744	3.1979	3.1967	3.1955	3.1967	3.1967
5	3.318	3.938	3.2912	3.2902	3.2884	3.2902	3.2902
6	4.615	5.699	4.5605	4.5579	4.5548	4.5579	4.5579
7			4.7378	4.7328	4.7316	4.7328	4.7328
8			5.2521	5.2457	5.2444	5.2457	5.2457
9			5.3185	5.3129	5.3106	5.3129	5.3129
10			6.4016	6.3925	6.3385	6.3925	6.3925
11			6.4539	6.4456	6.4411	6.4456	6.4456
12			7.1630	7.1454	6.4802	7.1435	7.1454
13			7.6879	7.6669	7.6640	7.6669	7.6669
14		_	7.7092	7.6851	7.6837	7.6851	7.6851
For the	e thickness h	= 0.01					
1	0.1171	0.1171	0.1166	0.1166	0.1166	0.1166	0.1166
2	0.1951	0.1953	0.1949	0.1949	0.1947	0.1949	0.1949
3	0.3093	0.3094	0.3082	0.3081	0.3079	0.3081	0.3081
4	0.3740	0.3744	0.3738	0.3736	0.3733	0.3736	0.3736
5	0.3931	0.3938	0.3924	0.3923	0.3920	0.3923	0.3923
6	0.5695	0.5699	0.5678	0.5674	0.5668	0.5674	0.5674
7			0.5963	0.5955	0.5953	0.5955	0.5955
8			0.6556	0.6547	0.6544	0.6547	0.6547
9			0.6835	0.6825	0.6822	0.6825	0.6825
10			0.8417	0.8402	0.8394	0.8402	0.8402
11			0.8605	0.8591	0.8583	0.8591	0.8591
12			0.9833	0.9800	0.9796	0.9800	0.9800
13			0.1040	1.0361	1.0357	1.0361	1.0361
14		_	0.1072	1.0684	1.0680	1.0684	1.0684

The non-dimensionalized natural frequencies Ω_n of a plate with the C/C/C/F boundary condition

Note: MC: Reissner–Mindlin thick-plate theory solution [19, 20]. TC: thin-plate theory solution [19, 21]. ANSP9: assumed strain plate bending element solution using consistent mass [20]. ANSP9a: assumed strain plate bending element solution using lumped mass [20]. LAG9: nine-node shell element [17]. ASL9: assumed strain shell element [19].

discrepancies between the analytical solution and the present result. Some intermediate frequencies are calculated in the FE analysis. However, the frequencies obtained from the present shell elements show a very good agreement with the exact solutions in overall modes. The natural frequencies are presented in Table 7.

4.3. ELLIPTICAL PLATES

Liew [31] presented the vibration characteristics of elliptical plates with aspect ratios a/b = 1, 2, 3 and 4. The geometry of the plate is presented in Figure 4.

Since the results for the circular plate (a/b = 1) are already presented in Section 4.2, the results of three elliptical plates with aspect ratios a/b = 2, 3 and 4 are presented in this

п	MC	TC	FS	ANSP9	ANSP9a	LAG9	ASL9	Present
For the	e thickness	h = 0.1						
1	1.302	1.413	1.300	1.3002	1.3002	1.3001	1.3002	1.3002
2	2.398	2.671	2.394	2.3946	2.3941	2.3939	2.3941	2.3941
3	2.888	3.383	2.885	2.8861	2.8852	2.8850	2.8852	2.8852
4	3.852	4.615	3.839	3.8410	3.8394	3.8387	3.8394	3.8394
5	4·237	4.988	4·232	4.2362	4.2328	4·2324	4.2328	4·2328
6	4.939	6.299	4.936	4.9444	4.9394	4·9391	4.9394	4.9394
7				5.4626	5.4571	5.4559	5.4571	5.4571
8				5.7979	5.7913	5.7902	5.7913	5.7913
9				6.5768	6.5611	6.5605	6.5611	6.5611
10				7.2296	7.2173	7.2147	7.2173	7.2173
11				7.3315	7.3119	7.3115	7.3119	7.3119
12				7.6051	7.5854	7.5833	7.5854	7.5854
13				8.0972	8.0746	7.9898	8.0746	8.0746
14				9.1558	9.1256	9.1205	9.1256	9.1256
For the	e thickness	h = 0.01						
1	0.1411	0.1413	0.1411	0.1411	0.1411	0.1411	0.1411	0.1411
2	0.2668	0.2671	0.2668	0.2668	0.2668	0.2668	0.2668	0.2668
3	0.3377	0.3383	0.3376	0.3378	0.3377	0.3377	0.3377	0.3377
4	0.4608	0.4615	0.4604	0.4607	0.4604	0.4604	0.4604	0.4604
5	0.4979	0.4988	0.4977	0.4984	0.4980	0.4980	0.4980	0.4980
6	0.6279	0.6299	0.6279	0.6295	0.6287	0.6287	0.6287	0.6287
7				0.6827	0.6820	0.6820	0.6820	0.6820
8				0.7539	0.7529	0.7528	0.7529	0.7529
9				0.8321	0.8301	0.8301	0.8301	0.8301
10				0.9725	0.9705	0.9705	0.9705	0.9705
11				0.1008	1.0052	1.0052	1.0052	1.0052
12	_	—	—	0.1019	1.0158	1.0158	1.0158	1.0158
13	_	—	—	0.1146	1.1416	1.1415	1.1416	1.1416
14				0.1269	1.2623	1.2623	1.2623	1.2623

The non-dimensionalized natural frequencies Ω_n of a plate with the S/C/S/C boundary condition

Note: MC: Reissner-Mindlin thick-plate theory solution [24, 25]. TC: thin-plate theory solution [24, 26]. FS: finite strip solution [25]. ANSP9: assumed strain plate bending element solution using consistent mass [20]. ANSP9a: assumed strain plate bending element solution using lumped mass [20]. LAG9: nine-node shell element [17]. ASL9: assumed strain shell element [19].

section. The resulting frequencies are presented in the dimensionless form.

$$\Omega_n = \omega_n a^2 (\rho h/D)^{1/2},$$

where ω_n is the natural frequency of the plate, *a* is the radius of the elliptical plates in the *x* direction, ρ is the density of the material, *h* is the thickness of the plate, and the $D = Eh^3/12(1 - v^2)$ is the flexural rigidity of the plate in which *E* is the elastic modulus and v = 0.3 is the Poisson ratio. The thickness–span ratio is assumed as h/2b = 0.01 since there is no information of aspect ratio presented in reference [31] and the plate is discretized with a mesh of 400 FEs for analysis. All units are assumed to be consistent. The frequencies calculated by using the present shell elements with the aspect ratio show good agreement with Liew's results although there are some discrepancies in the higher mode. As a reference solution, the FE solution obtained by using the shell element S9R5 of the ABAQUS [32] is

n	MC	TC	FS	ANSP9	ANSP9a	LAG9	ASL9	Present
For the	e thickness	h = 0.1						
1	1.092	1.154	1.092	1.0919	1.0918	1.0918	1.0918	1.0918
2	2.298	2.521	2.296	2.2969	2.2965	2.2964	2.2965	2.2965
3	2.543	2.862	2.542	2.5425	2.5420	2.5419	2.5420	2.5420
4	3.616	4.203	3.611	3.6121	3.6108	3.6105	3.6108	3.6108
5	4.187	4.893	4.184	4.1892	4.1859	4.1857	4.1859	4·1859
6	4.543	5.525	4.541	4.5475	4.5434	4.5432	4.5434	4.5434
7				5.3267	5.3216	5.3208	5.3216	5.3216
8				5.4967	5.4910	5.4903	5.4910	5.4910
9				6.5521	6.5365	6.5361	6.5365	6.5365
10				6.9368	6.9192	6·9189	6.9192	6.9192
11				7.0252	7.0137	7.0118	7.0137	7.0137
12				7.5256	7.5063	7.5048	7.5854	7.5063
13				7.7762	7.7554	7.7540	7.7554	7.7554
14				9.0236	8.9942	8.9902	8.9942	8.9942
For the	e thickness	h = 0.01						
1	0.1153	0.1154	0.1153	0.1153	0.1153	0.1153	0.1153	0.1153
2	0.2521	0.2521	0.2519	0.2519	0.2519	0.2519	0.2519	0.2519
3	0.2858	0.2862	0.2858	0.2859	0.2858	0.2858	0.2858	0.2858
4	0.4190	0.4203	0.4195	0.4197	0.4195	0.4195	0.4195	0.4195
5	0.4889	0.4893	0.4883	0.4890	0.4886	0.4886	0.4886	0.4886
6	0.5533	0.5525	0.5513	0.5522	0.5516	0.5516	0.5516	0.5516
7				0.6518	0.6511	0.6511	0.6511	0.6511
8				0.6862	0.6854	0.6854	0.6854	0.6854
9				0.8255	0.8235	0.8235	0.8235	0.8235
10				0.9159	0.9136	0.9136	0.9136	0.9136
11				0.9162	0.9142	0.9142	0.9142	0.9142
12	_	—		0.9840	0.9815	0.9815	0.9815	0.9815
13	_	—		0.1051	1.0478	1.0478	1.0478	1.0478
14	—			0.1245	1.2404	1.2623	1.2623	1.2404
14				01243	1 2404	1 2023	1 2023	1.7

The non-dimensionalized natural frequencies Ω_n of a plate with the S/C/S/S boundary condition

Note: MC: Reissner–Mindlin thick-plate theory solution [24, 25]. TC: thin-plate theory solution [24, 26]. FS: finite strip solution [25]. ANSP9: assumed strain plate bending element solution using consistent mass [20]. ANSP9a: assumed strain plate bending element solution using lumped mass [20]. LAG9: nine-node shell element [17]. ASL9: assumed strain shell element [19].

also provided. The natural frequencies and mode shapes of the elliptical plates are presented in Figures 5, 6 and 7 and Table 8 respectively.

4.4. DOUBLY CURVED SHELL

In this example, the effect of double curvature on the natural frequencies is investigated. The mid-surface of the shell is defined in the following equation:

$$x = -\frac{1}{2} \left(\frac{x^2}{R_x} + \frac{y^2}{R_y} \right)$$

п	MC	TC	FS	ANSP9	ANSP9a	LAG9	ASL9	Present
For the	e thickness	h = 0.1						
1	0.603	0.619	0.598	0.5977	0.5977	0.5975	0.5977	0.5977
2	1.495	1.613	1.483	1.4836	1.4835	1.4827	1.4835	1.4835
3	1.900	2.035	1.884	1.8848	1.8845	1.8840	1.8845	1.8845
4	2.744	3.075	2.720	2.7220	2.7214	2.7200	2.7214	2.7214
5	3.073	3.533	3.057	3.0595	3.0584	3.0574	3.0584	3.0584
6	3.855	4.421	3.827	3.8329	3.8299	3.8288	3.8299	3.8299
7				4.1892	4.1872	4.1846	4.1872	4·1872
8				4.5709	4.5671	4.5652	4.5671	4·5671
9				5.1551	5.1489	5.1479	5.1489	5.1489
10				5.9013	5.8948	5.8911	5.8948	5.8948
11				6.1497	6.1415	6.1381	6.1415	6.1415
12				6.2367	6.2218	6.2200	6.2218	6.2218
13				6.8765	6.8598	6.8573	6.8598	6.8598
14				7.6122	7.5885	7.5874	7.5885	7.5885
For th	e thickness	h = 0.01						
1	0.0622	0.0619	0.0619	0.0619	0.0619	0.0618	0.0619	0.0619
2	0.1612	0.1613	0.1611	0.1612	0.1612	0.1610	0.1612	0.1612
3	0.2045	0.2035	0.2033	0.2034	0.2033	0.2032	0.2033	0.2033
4	0.3075	0.3075	0.3070	0.3071	0.3070	0.3067	0.3070	0.3070
5	0.3528	0.3533	0.3526	0.3528	0.3527	0.3525	0.3527	0.3527
6	0.4438	0.4421	0.4413	0.4420	0.4417	0.4415	0.4417	0.4417
7				0.5024	0.5021	0.5015	0.5021	0.5021
8				0.5454	0.5459	0.5446	0.5449	0.5449
9				0.6411	0.6402	0.6399	0.6402	0.6402
10				0.7438	0.7430	0.7422	0.7430	0.7430
11	_			0.7786	0.7768	0.7765	0.7768	0.7768
12				0.7911	0.7899	0.7891	0.7899	0.7899
13				0.8809	0.8788	0.8783	0.8788	0.8788
14				1.0288	1.0252	1.0248	1.0252	1.0252

The non-dimensionalized natural frequencies Ω_n of a plate with the S/C/S/F boundary condition

Note: MC: Reissner-Mindlin thick-plate theory solution [24, 25]. TC: thin-plate theory solution [24, 26]. FS: finite strip solution [25]. ANSP9: assumed strain plate bending element solution using consistent mass [20]. ANSP9a: assumed strain plate bending element solution using lumped mass [20]. LAG9: nine-node shell element [17]. ASL9: assumed strain shell element [19].

in which R_x and R_y are the radii of curvature in the x and y directions respectively. The shell has curvilinear planform. Two kinds of curvilinear planforms are considered, namely, the circular (a/b = 1) and elliptical (a/b = 2) planforms. The geometry of the shell is presented in Figure 8. The shell is assumed to be clamped on its circular or elliptical circumference. The effect of Gaussian curvature $(1/R_xR_y)$ is investigated by varying the curvature ratio (R_y/R_x) with combination of the wide ranges of shallowness ratio $(2b/R_y)$. The Poisson ratio of shells is v = 0.3 and its thickness ratio is taken as 2a/h = 100.0. The resulting frequencies are presented in the dimensionless form

$$\Omega_n = 4\omega_n ab(\rho h/D)^{1/2},$$

TABLE	7

Mada		Aspect rati	o $h/a = 0.01$		Aspe	ct ratio $h/a =$	= 0.2
n	AS	LAG9	ASL9	Present	LAG9	ASL	Present
1	10.2158	10.2135	10.2129	10.2129	7.49398	7.49388	7.49382
2	21.2600	21.2341	21.2311	21.3110	13.04010	13.04010	13.04000
3	34.8800	34.7925	34·7816	34·7816	18·62370	18.62300	18.62270
		34.8027	34.7915	34.7915	18.62590	18.62520	18.62500
4	39.7710	39.6796	39.6766	39.6766	20.52050	20.52130	20.52100
5	51.0400	50.8591	50.8348	50.8348	24·29180	24.29140	24.29100
6	60.8200	60·6797	60·6761	60·6761	27.34810	27.35060	27.35030
7	60.6650	60.3585	60.3028	69.3027	20.08000	20.08520	29.98480
	0,000	69.3637	69.3379	69.3379	29.98340	29.98690	29.98650
8	84.5800	84.3196	84.2999	84.2999	30.45530	33.92340	33.92290
		84.3800	84.3835	84.3853		33.92610	33.92560
9	111.0100	88.9752	88.9848	88.9848	33.91490	35.12680	35.12630
10	140.1080	90.2597	90.2078	90.2078	35.63310	35.65090	35.65040
						—	—
11		110.5830	110.5630	110.5630	40.29730	40.31720	40.31660
		112 5110	112 1000	112 1000			
12		113.5440	113.4890	113.4890	41.19330	41.23920	41.23850
12		113.5570	113.5020	113.5020	41.19470	41.24180	41.24120
13		119.8420	119.8480	119.8480	42.00430	42·01420	42.01360
14		139·2750	139·2220	139·2220	44.78240	44·78420	44.78340
15		139.3700	139.2280	139.2280	45.12300	45·01030	45.00960
		139.3920	139.3760	139.3760			

The non-dimensionalized natural frequencies Ω_n of a clamped circular plate

Note. AS: analytical solutions [30]. LAG9: nine-node shell element [17]. ASL9: assumed strain shell element [19]. — multiple frequencies associated with axisymmetric modes.

Figure 4. The geometry of an elliptical plate.

Figure 5. A clamped elliptical plate with aspect ratio a/b = 2: (a) mode 1–(o) mode 15.

where ω_n is the natural frequency of the plate, *a* is the radius of the elliptical plates in the *x* direction, *b* is the radius of the elliptical plates in the *y* direction, ρ is the density of the material, *h* is the thickness of the shell and the $D = Eh^3/12(1 - v^2)$ is the flexural rigidity of the plate in which *E* is the elastic modulus and v = 0.3 is the Poisson ratio. The thickness–span ratio is taken as h/2a = 0.01 and the plate is discretized with a mesh of 400 FEs for analysis. All units are assumed to be consistent. The present result is in good agreement with a reference solution [33] with lower curvature $(2b/R_y)$ but there are some discrepancies in case of shells with higher curvature. To clarify this discrepancies between the present element and the reference solution [33], the shell element S9R5 of the ABAQUS [32] is used to produce new FE reference solution. The present results are in good agreement with the FE solutions obtained with the ABAQUS. From this study, it was found that the curvature of the shell greatly affects the free-vibration behaviour. The fundamental frequencies of the shell are presented in Tables 9 and 10.

Figure 6. A clamped elliptical plate with aspect ratio a/b = 3: (a) mode 1–(o) mode 15.

4.5. CLAMPED CYLINDRICAL SHELL PANEL

A clamped cylindrical shell is analyzed. It was tested experimentally by Nath [34] and was also solved numerically by various methods [35–37]. The following material properties are used: elastic modulus $E = 10^7$, the Poisson ratio v = 0.33 and the mass density of $\rho = 0.096$. The thickness of the shell is taken as h = 0.013 and a 10×10 FE mesh is used for analysis. All units are assumed to be consistent. The geometry of the shell is illustrated in Figure 9.

The two shell elements LAG9 [17], ASL9 [19] are used to produce a reference solutions and the results are presented in Figures 10 and 11 and Table 11. The frequencies obtained using the element LAG9 are higher than those obtained using the elements ASL9 and the present element. The present element produces the best agreement with the solution which is based on the higher order theory [36].

Figure 7. A clamped elliptical plate with aspect ratio a/b = 4: (a) mode 1–(o) mode 15.

4.6. CYLINDRICAL SHELL: CURVED FAN BLADE

The vibrations of cylindrical shells have been frequently studied because of the relationship to practical vibration problems such as turbine engine blade. Lee *et al.* [38] investigated the behaviour of this structure using the Ritz method based on classical thin-shallow-shell theory in which the different polynomial terms are used. In addition, the effects of the aspect ratio (a/b), shallowness ratio (b/R) and width-thickness ratio (b/h) on the frequencies were also investigated by them. In order to investigate the effect of span-thickness ratio on the natural frequencies and mode shapes, a moderately thin (b/h = 100) and shallow shell (b/R = 0.5) is used. First, the effect of aspect ratio (a/b) on the frequency is investigated with two aspect ratios: (a/b) = 1 and 5. Note that Lim and Liew [39] also investigated the same problem and it is used here as reference solution in this

Moda		a/b = 2			a/b = 3			a/b = 4	
n	Ref	Abaqus	Present	Ref	Abaqus	Present	Ref	Abaqus	Present
1	27.4773	27.2460	27.2841	56.8995	56.1096	56.3842	97.5984	95.7492	96·3561
2	39.4976	39.2112	39.3187	71.5902	70.1736	70.9595	115.6080	112.7570	113.8980
3	55.9773	55.5036	55.6492	90.2380	88.0596	89.2972	137.2690	133.5000	134.9390
4	69.8557	69.1572	69.3343	113.2660	109.6860	111.5840	164.3250	157.2960	159.5900
5	77.0443	76.2480	76.4236	140.7460	135.5400	137.9990	195.3400	184·7760	187.9870
6	88·0472	86.8140	87.2420	150.0890	146.4360	147.6710	255.0950	215.7240	220.2470
7		101.5360	101.6943		165.8040	168.6610		250.6680	254.0450
8		108.1620	108.7374		168.1440	171.2220		250.6680	256.4610
9		130.2000	130.6763		193.7880	198·0190		278.1120	283·2320
10		131.3400	131.4431		200.5920	203.6420		289.6200	296.6990
11		133.1640	133.9560		221.9760	228.1300		310.3320	315.4470
12		153.6360	154.6886	_	239.8440	242.9620	_	333.0600	340.9870
13		162.0600	162.9953		253.4160	261.6840		343.8240	354.7230
14		165.5760	165.6098		277.2000	280.4390		380.7600	389.1430
15		180.7920	182·0875		283.3200	286.6140		381.0840	389.3490

The non-dimensionalized natural frequencies Ω_n of a clamped eliptical plates

Note. Ref: analytical solution [31]. Abaqus: FE solution using Abaqus [32].

example. A 10×10 FE mesh is used to model the entire shell. The shell geometry is presented in Figure 12. The result is expressed in non-dimensional form as

$$\Omega = \omega_n a^2 \sqrt{\frac{\rho h}{D}},$$

where ω_n is the natural frequency of the shell, *a* is the width of the shell, ρ is the density of the material, *h* is the thickness of the shell and the flexural rigidity is $D = Eh^3/12(1 - v^2)$ in which *E* is the elastic modulus and v = 0.3 is the Poisson ratio. The results are compared with the solution obtained by the Ritz method where six and five polynomial terms are used in the *x* and *y* directions respectively. From the test, the larger aspect ratio produces the lower frequency and quite different mode shapes are observed. The natural frequencies and the mode shapes are presented in Table 12 and Figures 13 and 14.

5. CONCLUSIONS

The assumed natural strain nine-node Lagrangian shell element is developed and used to assess the vibration behaviour of shell structures. The accuracy and efficiency of the proposed shell FE formulation are tested by six numerical examples. From the numerical results, the shell element based on the proposed formulation has performed well in most situations and the results are very close to the theoretical solutions and have a good agreement with the other reference solutions. It is shown that the present shell element is applicable to most shell structures which are either the thick or thin case.

Figure 8. The shell geometries with respect to the parameters $(2b/R_y, R_y/R_x)$: (a) (0·1, -1·0), (b) (0·1, -1·5), (c) (0·1, 0·0), (d) (0·1, 0·5), (e) (0·1, 1·0), (f) (0·3, -1·0), (g) (0·3, -0·5), (h) (0·3, 0·0), (i) (0·3, 0·5), (j) (0·3, 1·0), (k) (0·5, -1·0), (l) (0·5, -0·5), (m) (0·5, 0·0), (n) (0·5, 0·5) and (o) (0·5, 1·0).

Natural frequencies ω_n of fully clamped doubly curved shallow shell with circular platform

						Мо	ode			
$2b/R_y$	R_y/R_z		1	2	3	4	5	6	7	8
0.1	-1.0	Pre	54·039	89.795	89.795	140.78	142.68	160.77	204.86	204.86
		Refa	54.038	89.803	89.803	140.77	142.75	160.81	204.94	204.94
		Refb	54.100	90.016	90.025	141.30	143.25	161.43	205.94	205.97
	-0.5	Pre	50.055	86.729	89.487	140.28	141.33	160.09	204.28	204.29
		Refa	50.054	86.736	89.496	140.27	141.40	160.13	204.36	204.37
		Refb	50·111	86.954	89.689	140.79	141.87	160.73	205.33	205.35
	0.0	Pre	50.158	86.066	89.760	140.54	140.96	160.23	204.26	204.27
		Refa	50.160	86.074	89.770	140.53	141.03	160.27	204.34	204.36
		Refb	50.268	86.300	89.958	141.06	141.50	160.87	205.31	205.33
	0.5	Pre	54·345	87.875	90.607	141.54	141.64	161.13	204.82	204.82
		Refa	54·350	87.883	90.619	141.54	141.71	161.17	204.90	204.91
		Refb	54.411	88·120	90.827	142.09	142.19	161.80	205.89	205.91
	1.0	Pre	61.729	92.005	92.005	143.28	143.29	162.85	205.93	205.93
		Refa	61.733	92·016	92·016	143.27	143.36	162.89	206.01	206.02
		Refb	61.811	92.263	92.278	143.87	143.89	163.58	207.06	207.08
0.3	-1.0	Pre	111.790	121.460	121.460	153.72	168.59	178.16	217.57	217.57
		Refa	111.790	121.460	121.460	153.71	168.64	178.20	217.61	217.61
		Refb	54·100	90.016	90.025	141.30	143.25	161.43	205.94	205.97
	-0.5	Pre	94·021	100.220	119.390	149.67	155.99	174.85	212.53	212.98
		Refa	94·022	100.220	119.400	149.66	156.04	174.90	212.58	213.07
		Refb	94·336	100.850	119.830	150.56	157.37	175.74	214.31	214.73
	0.0	Pre	93.484	94.807	121.300	151.75	152.48	176.97	212.40	212.50
		Refa	93.490	94.814	121.310	151.75	152.54	177.02	212.46	212.61
		Refb	93.823	95.505	121.680	152.69	153.92	177.77	214.19	214.30
	0.5	Pre	108.600	111.460	127.010	159.70	159.90	183.22	217.27	217.31
		Refa	108.610	111.470	127.030	159.77	159.91	183.28	217.38	217.38
		Refb	109.420	111.880	127.620	161.12	161.17	184.46	219.29	219.34
	1.0	Pre	135.540	135.540	138.790	172.98	172.99	197.15	226.50	226.50
		Refa	135.560	135.560	138.810	173.00	173.06	197.20	226.60	226.60
		Refb	139.690	136.700	139.490	174.80	174.82	199.12	229.17	229.19
0.5	-1.0	Pre	164·310	164.310	168.850	175.35	209.43	211.73	238.81	238.81
		Refa	164.300	164.300	168.850	175.33	209.45	211.76	238.80	238.81
		Refb	166.720	166.730	170.040	178.47	213.66	216.16	223.57	223.57
	-0.5	Pre	121.860	136.580	159.460	165.73	180.69	205.78	227.05	228.23
		Refa	121.860	136.580	159.470	165.73	180.72	205.82	227.06	228.32
		Refb	123.600	137.380	160.610	167.80	184.72	207.40	230.93	232.03
	0.0	Pre	108.740	128.750	163.650	170.57	177.50	210.71	224·31	226.81
		Refa	108.740	128.770	163.670	170.58	177.54	210.77	224.46	226.84
		Refb	110.570	129.770	164.600	127.73	181.58	211.93	228.90	230.84
	0.5	Pre	139.490	158.030	176.510	189.99	197.70	225.24	237.33	238.88
		Refa	139.510	158.070	176.530	190.01	197.76	225.31	237.48	238.94
		Refb	141.810	159.570	178.260	193.08	201.44	228.10	242.40	243.67
	1.0	Pre	192.790	192.790	204.510	218.40	218.41	260.76	260.76	262.66
	10	Refa	192.810	192.810	204.550	218.44	218.48	260.87	260.87	262.72
		Refh	196.630	196.630	206.600	223.87	223.88	267.82	267.83	268.64
		1.010	170 000	170 000	200 000	223 07	220 00	207.02	207.05	200 01

Note: Pre: present shell element. Refa: Abaqus [32]. Refb: analytical solution [33].

Natural frequencies ω_n of fully clamped doubly curved shallow shell with elliptical platform

						Мо	ode			
$2b/R_y$	R_y/R_z		1	2	3	4	5	6	7	8
0.1	-1.0	Pre	65.145	84.547	115.29	141.63	155.51	175.94	205.20	218.46
		Refa	65.090	84.355	115.02	141.29	155.17	175.09	204.88	217.31
		Refb	65.350	84.952	116.06	142.76	156.88	177.64	207.48	220.99
	-0.5	Pre	61.706	83.520	114.82	139.43	155.44	175.03	205.34	218.04
		Refa	61.646	83.328	114.54	139.08	155.10	174.18	205.03	216.89
		Refb	61.907	83.893	115.50	140.58	156.64	176.73	207.35	220.53
	0.0	Pre	61.711	83.721	115.02	138.86	155.63	175.01	205.52	218.14
		Refa	61.656	83.532	114.75	138.50	155.29	174.17	205.22	217.00
		Refb	61.919	84·097	115.69	140.01	156.79	176.73	207.45	220.64
	0.2	Pre	65.188	85.154	115.89	139.93	156.06	175.90	205.74	218.76
		Refa	65.141	84·972	115.62	139.58	155.73	175.06	205.43	217.63
		Refb	65.402	85.560	116.61	141.10	157.31	177.65	207.80	221.32
	1.0	Pre	71.532	87.729	117.43	142.61	156.74	177.67	205.99	219.89
		Refa	71.498	87.554	117.17	142.27	156.41	176.84	205.68	218.77
		Refb	71.771	88.205	118.30	143.79	158.22	179.47	208.38	222.56
0.3	-1.0	Pre	117.430	120.410	142.98	162.55	174.49	186.50	218.50	225.86
		Refa	117.410	120.320	142.79	162·27	174.19	185.70	218.18	224·70
		Refb	118.250	222·050	145.73	164.61	178.22	189.38	224.09	229.92
	-0.5	Pre	101.410	114.710	139.32	145.32	174.47	179.22	220.12	222.37
		Refa	101.400	114.630	139.15	144.99	174.21	178.41	219.86	221.25
		Refb	102.010	115.510	140.47	147.25	176.25	181.69	222.95	225.64
	0.0	Pre	101.200	116.070	140.24	140.93	176.07	179.04	221.74	223.26
		Refa	101.200	116.000	139.90	140.78	175.84	178.25	221.51	222·20
		Refb	181.820	116.780	141.86	142.30	177.45	181.63	223.86	226.60
	0.5	Pre	118.310	124.830	147.23	149.36	179.32	186.56	223.37	228.57
		Refa	118.320	124.780	147.11	149.06	179.11	185.83	223.15	227.57
		Refb	119.100	125.950	148.82	151.57	181.61	189.51	226.72	232.51
	1.0	Pre	138.260	140.970	160.97	170.15	183.89	200.36	224.92	237.40
	10	Refa	138.210	140.940	160.91	169.91	183.67	199.72	224.68	236.45
		Refb	140.640	142.340	164.81	172.80	188.90	204.37	231.78	242.93
0.5	- 1.0	Pre	166.100	170.240	188.45	194·33	203.41	203.59	238.74	240.16
		Refa	166.050	170.160	188.37	194.10	202.68	203.33	237.58	239.83
		Refb	171.660	172.900	197.86	198.77	210.10	214.54	248.13	254.21
	-0.5	Pre	149.470	155.990	157.26	176.53	186.85	205.81	230.18	245.88
	00	Refa	149.440	155.690	157.22	176.44	186.09	205.64	229.10	245.69
		Refh	151.310	159.610	159.64	179.44	191.08	209.49	235.36	250.96
	0.0	Pre	142.560	147.840	160.09	180.54	186.16	210.18	232.65	250.42
	00	Refa	142.500 142.240	147.810	160.07	180.49	185.46	210.08	231.71	250.30
		Refh	146.430	149.690	161.90	182.45	190.61	210.00	237.87	253.30
	0.5	Pre	165.520	176.300	176.58	102-45	204.93	212 42	246.05	253.66
	05	Refa	165.200	176.370	176.58	103.0/	204.36	210.05	240.03	253.54
		Refh	170.020	178.830	170.02	108.27	210-70	222.04	273.23	260.25
	1.0	Dro	107.740	108.040	212.20	222.00	210 / 9	222.04	255.92	260 25
	1.0	Pafa	107.740	108.010	211.00	223.99	229.03	233.33	255.65	203.13
		Dofh	205.170	205.510	211.05	223.91	229.03	234.90	255.05	204.43
		Kelb	203.170	203.310	210.93	239.10	239.00	240.30	214.32	2/9.01

Note: Pre: present shell element. Refa: Abaqus [32]. Refb: analytical solution [33].

Figure 9. A clamped cylindrical shell panel.

Т	ABI	LE	11		
The Natural frequencies	ω_n	of	clamped	cylindrical	panel

п	Expt	Refa	Refb	Refc	LAG9	ASL9	Present
1	814	869.560	890	870	897.142	879·244	878.253
2	940	957.560	973	958	989.541	968.427	966.972
3	1260	1287.560	1311	1288	1356.33	1302.47	1300.51
4	1306	1363.210	1371	1364	1407.25	1378.65	1377.21
5	1452	1440.260	1454	1440	1494.90	1455.03	1453.50
6	1802	1755.590	1775	1753	1854·01	1770.87	1768.54
7	1735	1779.630	1816	1779	1996.44	1802.15	1797.46
	1770	_					
8	2100	2056.080	2068	2055	2197.01	2079.55	2077.21
9	2225	2221.750	2234	2218	2368.94	2242.47	2239.54
10	2280	2295.310	2319	2288	2505.70	2313.59	2306.38
11	2518	2553.120			2742.38	2582.36	2573.77
12	2622	2569.500			3002.53	2594·85	2581.58
13	3016	3041.690			3365.68	3069.81	3048.21
14	3188	3081.280			3440.05	3119.12	3107.57
15	3113	3112.900			3466.82	3121.52	3111.13
16	3332	3299.670			3646.96	3321.82	3311.50
	3348						
17	3403	3485.700			4028.54	3564.75	3517.92
	3445						
18	3699	3686.580			4277.26	3684.92	3668.25
19	3812	3855.450			4303.11	3857.51	3823.05
20	3930	3980.780			4625.68	4027.97	3970.34

Note: Expt: experiments results [34]. Refa: numerical solution [37]. Refb: numerical solution [35]. Refc: analytical solution [36]. LAG9: nine-node shell element [17]. ASL9: assumed strain shell element [19].

Figure 10. Mode shapes of a clamped cylindrical panel: (a) mode 1-(o) mode 15.

TABLE 12

Natural frequencies ω_n of a curved fan blade with two aspect ratios

Mada	for $a/b = 1$					For $a/b = 5$			
n	Refa	Refb	LAG9	ASL9	Present	Refa	LAG9	ASL9	Present
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{array} $	$ \begin{array}{r} 10.515\\ 16.990\\ 30.649\\ 42.229\\ 47.684\\ 65.450\\ 89.991\\ 90.143 \end{array} $	10.589 16.981 30.641 42.211 47.668 65.439 89.727 89.947	10.623 17.199 30.473 42.314 47.385 64.439 89.524 89.920	$ \begin{array}{r} 10.605\\ 17.176\\ 30.310\\ 42.355\\ 47.440\\ 63.957\\ 89.578\\ 90.007 \end{array} $	10.604 17.172 30.315 42.356 47.438 63.957 89.577 90.009	$\begin{array}{r} 4.3223\\ 7.1753\\ 22.8990\\ 25.9950\\ 42.3940\\ 65.2170\\ 65.2810\\ 67.0640\end{array}$	$\begin{array}{r} 4.4416\\ 8.4678\\ 23.2100\\ 26.6930\\ 42.6290\\ 65.9230\\ 66.7340\\ 67.6690\end{array}$	$\begin{array}{r} 4.4409\\ 7.1220\\ 22.7970\\ 26.6750\\ 42.4090\\ 65.9330\\ 66.5700\\ 67.4150\end{array}$	$\begin{array}{r} 4.4369\\ 7.1174\\ 22.7740\\ 26.6440\\ 42.3400\\ 65.8950\\ 66.4780\\ 67.2090\end{array}$

Note: Refa: theoretical solution [38]. Refb: theoretical solution [39]. LAG9: nine-node shell element [17]. ASL9: assumed strain shell element [19].

Figure 11. Mode shapes of a clamped cylindrical panel: (a) mode 16-(o) mode 30.

ACKNOWLEDGMENT

The first author is grateful to the late Professor E. Hinton for his encouragement throughout this work in Swansea.

REFERENCES

- 1. A. E. H. LOVE 1888 *Philosophical Transactions of the Royal Society* **179**, 527–546. The small vibrations and deformations of thin elastic shell.
- 2. L. H. DONELL 1933 NASA Report 479. Stability of thin-walled tubes under torsion.
- 3. A. W. LEISSA 1973 NASA PA-288, Washington, DC. Vibrations of shells.
- 4. M. S. QATU 1992 Shock Vibration Digest 24, 3-15. Review of shallow shell vibration research.

Figure 12. Geometry of curved fan blade.

- 5. K. M. LIEW, C. W. LIM and S. KITIPORNCHAI 1997 *Applied Mechanics Reviews* 50, 431–444. Vibration of shallow shells: a review with bibliography.
- 6. A. ADINI 1961 *Ph.D Dissertation, University of California, Berkeley, Analysis of shell structures by the finite element methods.*
- 7. R. H. GALLAGHER 1975 Proceedings of the World of the conference on Finite element methods in structural mechanics, Bournemouth. Shell elements.
- 8. S. AHMAD, B. M. IRONS and O. C. ZIENKIEWICZ 1970 International Journal of Numerical Methods in Engineering 2, 419–451. Analysis of thick and thin shell structures by curved finite elements.
- 9. W. P. DOHERTY, E. J. WILSON and R. L. TAYLOR 1969 UC-SESM Report No. 69-3, Department of Civil Engineering, University of California, Berkeley. Stress analysis of axisymmetric solids utilizing higher order quadrilateral finite element.
- 10. O. C. ZIENKIEWICZ, R. L. TAYLOR and J. M. TOO 1971 International Journal of Numerical Methods in Engineering 3, 275–290. Reduced integration technique in general analysis of plates and shells.
- 11. K. J. BATHE and E. N. DVORKIN 1985 International Journal of Numerical Methods in Engineering (Short Communication) 21, 367–383. A four-node plate bending element based on Mindlin-Reissner plate theory and a mixed formulation.
- 12. T. BELYTSCHKO, B. L. WONG and H. STOLARSKI 1989 *International Journal of Numerical Methods in Engineering* 28, 385–414. Assumed strain stabilization procedure for the 9-node Lagrangian shell element.
- 13. K. M. LIEW 1995 *Journal of Sound and Vibration* 180, 163–176. Research on thick plate vibration: a literature survey.
- 14. T. J. R. HUGHES 1987 The Finite Element Method—Linear Static and Dynamic Finite Element Analysis. Englewood Cliffs, NJ: Prentice-Hall.
- 15. K. J. BATHE 1982 Finite Element Procedures in Engineering Analysis. Englewood Cliffs NJ: Prentice-Hall.
- 16. O. C. ZIENKIEWICZ and R. L. TAYLOR 1989 The Finite Element Method, Vol. 1. London: McGraw-Hill; fourth edition.
- 17. W. KANOK-NUKULCHAI 1979 International Journal of Numerical Methods in Engineering 14, 179–200. A simple and efficient finite element for general shell analysis.
- 18. S. J. LEE and W. KANOK-NUKULCHAI 1998 *International Journal of Numerical Methods in Engineering* 4, 777–798. A nine-node assumed strain finite element for large-deformation analysis of laminated shells.
- H. C. HUANG and E. HINTON 1986 International Journal of Numerical Methods in Engineering 22, 73–92. A new nine-node degenerated shell element with enhanced membrane and shear interpolation.

Figure 13. Mode shapes of a curved fan blade with the appect ratio a/b = 1: (a) mode 1-(o) mode 15.

- 20. S. J. LEE and Y. B. KIM 1994 *Journal of the Architectural Institute of Korea* 10, 181–188. Finite element analysis of laminated plates with assumed strain method.
- 21. A. W. LEISSA 1973 Journal of Sound and Vibration 31, 257–293. The free vibration of rectangular plates.
- 22. B. S. AI. JANABI and E. HINTON 1988 in *Numerical Methods and Software for Dynamic Analysis of Plates and Shells* (E. Hinton, editor) 167–204. Swansea: Pineridge Press. A study of the free vibrations of square plates with various edge conditions.
- 23. S. SRINIVAS, C. V. JOGA RAO and A. K. RAO 1970 *Journal of Sound and Vibration* **12**, 187–199. An exact analysis for vibration of simply supported homogeneous and laminated, thick rectangular plates.
- 24. J. N. REDDY and N. D. PHAN 1985 *Journal of Sound and Vibration* **98**, 157–170. Stability and vibration of isotropic and laminated plates according to a higher-order shear deformation theory.
- E. HINTON and DJ. VUKSANOVIC 1988 in Numerical Methods and Software for Dynamic Analysis of Plates and Shells (E. Hinton, editor) 1–47. Swansea: Pineridge Press. Closed form solutions for dynamic analysis of simply supported Mindlin plates.

Figure 14. Mode shapes of a curved fan blade with the aspect ratio: a/b = 5: (a) mode 1–(o) mode 15.

- 26. E. REISSNER 1945 ASME Journal of Applied Mechanics 12, 69–76. The effect of transverse shear deformation on the bending of elastic plate.
- 27. D. J. DAWE and O. L. ROUFAEIL 1980 *Journal of Sound and Vibration* **69**, 345–359. Rayleigh–Ritz vibration analysis of Mindlin plates.
- D. J. DAWE 1978 Journal of Sound and Vibration 59, 441–452. Finite strip models for vibration of Mindlin plates.
- 29. E. HINTON, DJ. VUKSANOVIC and H. C. HUANG 1988 in *Numerical Methods and Software for Dynamic Analysis of Plates and Shells* (E. Hinton, editor) 93–166. Swansea: Pineridge Press. Finite element free vibration and bucking analysis of initially stesses Mindlin plates.
- 30. A. W. LEISSA 1969 NASA SP-160, Washington, DC. Vibration of plates.
- 31. K. M. LIEW 1992 Journal of Sound and Vibration 154, 261–269. Use of two-dimensional orthogonal polynomials for vibration analysis of curcular and elliptical plates.
- 32. ABAQUS Theory and User Manuals. Hibbit, Karlson and Sorensen, Inc., Version 5.7.
- 33. K. M. LIEW 1995 Journal of Engineering Mechanics 121, 1277–1283. Vibration behaviour of doubly curved shallow shells of curvilinear planform.

- 34. J. M. DEB NATH 1969 Ph.D. Thesis, University of Southampton. Dynamics of rectangular curved plates.
- 35. M. PETYT 1971 Journal of Sound and Vibration 15, 381-395. Vibration of curved plates.
- 36. C. W. LIM and K. M. LIEW 1995 *International Journal of Mechanical Sciences* 37, 277–295. A higher order theory for vibration of shear deformable cylindrical shallow shells.
- 37. M. D. OLSON 1971 *Journal of Sound and Vibration* **3**, 299–318. Dynamic analysis of shallow shells with a doubly-curved triangular finite element.
- 38. J. K. LEE, A. W. LEISSA and A. J. WANG 1981 *Journal of Sound and Vibration* 78, 311–328. Vibrations of cantilevered shallow cylindrical shells of rectangular planform.
- 39. C. W. LIM and K. M. LIEW 1994 *Journal of Sound and Vibration* 173, 343–375. A ph-z Ritz formulation for flexural vibration of shallow cylindrical shell of rectangular planform.